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Data Denoising Based on Hadamard Matrix
Transformation and Rayleigh Quotient
Maximization: Application to GNSS

Signal Classification
Jiang Yue , Bing Xu , Member, IEEE, and Li-Ta Hsu , Member, IEEE

Abstract— Global navigation satellite system (GNSS) signal
type classification based on machine learning is an effective
way to improve urban positioning performance. However, GNSS
signal type features extracted are unrelated, and the number
of features is limited, referred to as nonlocal- and few-feature
issues, which limits the classification performance. This article
presents a new data denoising theory to boost the classification
performance based on concepts of Hadamard matrix transfor-
mation and Rayleigh quotient maximization. Hadamard matrix
transformation increases the distance between different classes,
i.e., interclass distance, by projecting the data into a new space,
thereby increasing the classification performance. To improve the
signal-to-noise ratio (SNR) of features, we maximize the Rayleigh
quotient of the interclass distance. The proposed denoising
approach is, in particular, effective for nonlocal- and few-feature
signals. We applied the proposed data denoising theory to the
GNSS signal type classification problem. Results indicate that
GNSS signal type classification performance (microaveraging
recall, i.e., Recallμ) can be improved by about 5% ∼ 10%
in a static test. For the dynamic test, about 1.5% ∼ 3.5%
improvement is achieved.

Index Terms— Classification, data denoising, global naviga-
tion satellite system (GNSS), multipath (MP), non-line-of-sight
(NLOS) signal, reversible transformation.

I. INTRODUCTION

THE global navigation satellite system (GNSS) positioning
is challenging in urban canyons due to severe multi-

path (MP) interference and non-line-of-sight (NLOS) recep-
tions [1], [2]. MP signals occur when the direct signal is
reflected by nearby objects; thus, multiple signals are received,
including the line-of-sight (LOS) signal. Different from MP,
the NLOS receptions occur when the direct path is blocked,
and only the reflected signals are received. As such, NLOS
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signals always result in positive-ranging errors that are inde-
pendent of the receiver design [3]. A variety of techniques to
tackle the MP/NLOS issue have been proposed, which can be
broadly grouped into three categories, i.e., mitigation, detec-
tion, and correction, with their pros and cons. For instance, the
mitigation of MP/NLOS signals is to remove or reduce their
effects on the positioning. A typical example of this method
is a choke-ring antenna that gives low gains to satellites of
low elevation angles because low-elevated satellites are more
likely to generate reflected signals [4]. Consistency checking
is another way to find and remove MP/NLOS signals [5].
Detection tends to classify the received signals into different
signal types, i.e., LOS/MP/NLOS, using some machine learn-
ing algorithms [6], [7]. Finally, correction is to apply correc-
tions to measurements, so as to improve positioning accuracy.
As an example, Xu et al. [8] proposed a vector tracking-
based NLOS correction algorithm. Among these approaches,
GNSS signal type classification is an effective and low-cost
approach to improving urban GNSS positioning performance.
The identified signal types are useful for both ranging-based
least-squares GNSS positioning and 3-D mapping-aided GNSS
positioning algorithms [9].

Machine learning algorithms have been widely applied to
classification applications in the field of GNSS, e.g., the
GNSS receiver context and channel classification [10], [11]
and GNSS signal type classification [12]. Regarding GNSS
signal type classification, researchers group the features into
three categories, i.e., National Marine Electronics Association
(NMEA), receiver independent exchange format (RINEX), and
correlator levels based on the level at which the features
are extracted [7]. A critical problem for classifying GNSS
signals is that features extracted are linearly inseparable [13],
as shown in Fig. 1, due to complicated propagations of rays in
urban areas, as well as the dynamics of the receiver platform.
Fig. 1 presents the point cloud of RINEX-level features of
carrier-to-noise-density ratio (CNR), satellite elevation angle,
and pseudorange rate residual for a low-cost commercial
receiver. As can be seen, it is difficult for conventional machine
learning algorithms to distinguish between different signal
types due to noise interference.

Our previous study achieved an LOS/MP/NLOS classifi-
cation rate of 75% using a support vector machine (SVM)
classifier based on RINEX-level features [14]. An accuracy
of 91.8% was reported in [12] using the algorithm called
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Fig. 1. Point cloud of RINEX-level features of GNSS signals.

the adaptive neurofuzzy inference system. Other than the
classification rate, as introduced in [6], a confidence value
of the classification is also provided using the robust deci-
sion tree-based LOS/NLOS classifier. This method, however,
should make a tradeoff between high accuracy and low com-
putational load. Suzuki et al. [15] propose to identify the
NLOS reception by constructing an SVM classifier using fea-
tures extracted from multiple autocorrelation functions (ACFs)
based on a fact that the NLOS reception distorts the ACF of
the direct LOS signal. It should be noted that, as of now,
there is no benchmark data for evaluating the GNSS signal
classification accuracy. Therefore, the accuracy reported in
the existing literature is only valid for the specific dataset
used. Xu et al. [7] made a fair comparison between the three-
level classifiers using SVM and found that correlator-level
performed best because of deeper-level measurements.

In addition to the commonly used SVM, decision-tree, and
K-nearest-neighbor (KNN) based techniques, the neural net-
work (NN) is also applied to GNSS signal type classification.
In [16], an NN is constructed for LOS/NLOS classification
with sequential ACF outputs as inputs. Features are extracted
automatically within the network, instead of specifying fea-
tures manually. Quan et al. [17] propose a convolutional NN
(CNN)-based MP detection method, where time-series CNR
and MP-induced pseudorange error are used as inputs to the
network. In fact, NN is heavily dependent on several powerful
nonlinear techniques, such as convolutional layers and pooling
layers [18], [19]. The former is to detect local conjunctions
of features from the previous layer, and the latter is to merge
semantically similar features into a single one [20]. As such,
a premise of the success of NN is that array data, such as
images, have highly correlated features. However, there exist
signals that have different physical meanings for different fea-
tures, such as the GNSS signal. In general, GNSS signal type
features are extracted from the observables and measurements,
such as CNR, satellite elevation angle, and code pseudorange
measurement, which have different meanings, referred to as
nonlocal-feature signals in this article. Even worse, there are
only a few features that can be extracted for these signals,
referred to as a few-feature issue, causing a difficulty to build
a reliable network. In view of this, this article proposes a data
denoising technique to solve nonlocal- and few-feature issues.

Fig. 2. Illustration of the idea of data denoising. S1 means samples correctly
classified without denoising. S2 represents samples misclassified both with
and without denoising. S3 represents samples misclassified without denoising
but can be rectified with denoising. The noise of samples in S3 is comparable
to interclass distances. S4 represents samples correctly classified without
denoising but misclassified with denoising. S5 is a subset of S1, representing
samples that can be correctly classified both with and without denoising.

A. Related Work on Denoising
Denoising is a well-known problem in the signal processing

community and continues to attract researchers’ attention.
Some commonly used denoising algorithms include local
filters [21], [22], total variation [23], [24], sparsity prior [25],
[26], global regularization [27], [28], and so on. Among these
algorithms, a fundamental idea is to combine similar patches
for effective denoising [29]. If the signal is contaminated by
the noise with different frequencies, the Fourier transform and
the wavelet transform can be used to remove the noise by con-
verting the noisy signal into a new domain and then modifying
the noisy coefficients according to certain rules [30]. One of
the most well-known rules is soft thresholding introduced in
[31]. However, wavelet coefficients are statistically dependent,
thereby causing difficulties to find proper models for wavelet
coefficients of natural signals [30], [32].

B. Our Approach and Contributions

In this article, we propose a new framework to improve
the classification performance of nonlocal- and few-feature
signals. We apply the proposed algorithm to GNSS sig-
nal type classification. More specifically, we improve GNSS
LOS/MP/NLOS signal classification performance by rectify-
ing misclassified samples. Fig. 2 is an illustration of the idea
of this article. The white area (S1) denotes samples that are
easily identified due to low noise interference, while the red
area (S2) represents samples that are misclassified because of
large noise disturbance. The yellow area (S3) denotes the case
where noise is comparable to the interdistance, which poses
a great difficulty for classification and is the target area of
our proposed data denoising theory. As shown in Fig. 2, with
data denoising, samples in the yellow area are expected to be
rectified. Besides, the data denoising method may also have
a slight negative effect, as indicated by S4 area in Fig. 2.
Notice that the numbers in Fig. 2 are typical values for real-
world GNSS signal type classification in our experiments (see
Section IV). For other applications, these numbers might be
different, but the idea is the same, i.e., rectifying samples that
are misclassified without data denoising due to comparable
interclass distance and noise interference.

To improve classification performance, we propose a data
denoising algorithm based on concepts of the Hadamard
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matrix transformation and the Rayleigh quotient maximization.
More specifically, we first define a new metric, difference-
distance, which is used to better identify whether the sample
is misclassified or not. Then, we improve the classification
performance from two perspectives. On one hand, we trans-
form the data into a new space using Hadamard matrix
transformation. In the new space, a sample that is misclassified
in the original space can now be classified correctly. On the
other hand, we enhance the signal-to-noise ratio (SNR) of data
based on the concept of the Rayleigh quotient, considering the
analogous form of SNR and Rayleigh quotient definitions.

The main contributions are summarized as follows.
1) A metric called “difference-distance” is proposed to

describe the misclassification of samples. Difference-distance
is the difference between two Euclidean distances, which is
used to quantify the misclassification performance.

2) We prove that the difference-distance metric with
Hadamard S−1 transformation can rectify samples that are
easily misclassified in the original space. Detailed derivations
are given.

3) We improve the SNR of data based on the concept of
the Rayleigh quotient. An algorithm is developed to find the
reversible transformation matrix.

4) We apply the proposed denoising theory to machine
learning-based GNSS signal type classification. Real-world
data show that SVM, KNN, and NN’s performances are all
improved with data denoising.

The remainder of this article is organized as follows.
Section II introduces the background of the proposed data
denoising theory, including the definitions of distance met-
rics and the Hadamard S−1 matrix. Section III presents the
proposed data denoising theory in detail, including the perfor-
mance of difference-distance metrics in the S−1 transformation
space and how to improve the SNR of data. In Section IV,
we apply the proposed approach to a practical application,
i.e., GNSS signal type classification. Section V concludes this
article and suggests future work.

II. BACKGROUND

A. Distance Metric for Misclassification

The Euclidean distance is widely used to assess the sim-
ilarity of samples. However, when the noise disturbance is
comparable to the Euclidean distance, the Euclidean distance
cannot be used for classifying these samples, as shown in
Fig. 3. In Fig. 3, samples a and b with feature vectors fa and
fb, respectively, belong to Class 2, while sample c with feature
vector fc is from Class 1. Due to the comparable noise between
samples a and b to the Euclidean distance between samples
a and c, sample a is easily misclassified to Class 2. Hence,
a new metric, difference-distance with two states (positive
or negative), is proposed to describe whether the sample is
misclassified or not.

Before that, we introduce several assumptions and notations.
Let f ∈ RN be a vector representing the features of one sample
in the target data, with N being the number of features. A basic
assumption is that the noise in different features is independent
of each other. The Euclidean distance is used to evaluate the

Fig. 3. Illustration of the definition of difference-distance. Assuming that
samples b and c are labeled training data, sample a is a testing sample.
If Da−cb ≤ 0, the sample a is likely to be misclassified to Class 2.

distinction between two feature vectors fa and fb

Dab = ��(fa − fb)
T (fa − fb)

��1/2 = ���fT
ab�fab

��1/2
(1)

where �fab = fa − fb and the superscript T represents matrix
transpose.

Definition 1 (Difference-Distance): The difference-distance
is defined as the difference between two Euclidean distances.
Specifically, letting Dab be the Euclidean distance between
samples a and b, and Dac be the Euclidean distance between
samples a and c, the difference-distance between Dab and Dac

is defined as Da−cb = Dac − Dab. If Da−cb ≥ 0, sample a is
closer to sample b; that is, samples a and b are from the same
class.

Now, we consider the noise vector n. In addition, con-
sidering that samples a and b are from the same class, the
difference in features �fab is negligible. Alternatively, this
feature difference residual can be absorbed in noise difference
�nab. The difference-distance with noise disturbances between
interclasses and intraclasses is

Da−cb = Dac − Dab

= ��(�fac + �nac)
T (�fac + �nac)

��1/2−���nT
ab�nab

��1/2
.

(2)

Considering the noise, the SNR is used as a metric for
evaluating the disturbance in the Euclidean distance

SNR =
���� �fT �f
�nT �n

����
1/2

. (3)

In this article, the denoising algorithm is developed fol-
lowing two rules, i.e., rectifying the misclassified samples by
correcting Da−cb from negative to positive (referring to Fig. 3)
and maximizing the SNR defined in (3).

B. Hadamard S−1 Matrix Transformation

Let Hm be a Hadamard matrix [33], which is an m × m
matrix with entries ±1 and satisfies HmHT

m = mIm . Its dis-
tinct row vectors are mutually orthogonal. Hadamard matrices
have been used in a plenty of practical applications, such
as coding theory and cryptology [34] and signal processing
[35]. Wang et al. [36] and Yue et al. [37] applied it to the
Hadamard transform spectrometry (HTS) where the denoising
capability of Hadamard coding measurements with different
reconstruction methods is analyzed. In fact, another Hadamard
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matrix, called S, is also widely used in spectroscopy [38]–[40],
as defined in the following.

Definition 2 (Hadamard S Matrix): The first row and col-
umn of the Hadamard Hm matrix contain only +1 s. Deleting
this row and column, we obtain an (m − 1) × (m − 1) matrix
Gm−1. Then, we change the +1 s in Gm−1 to 0 s and −1 s
to 1 s, so we have a matrix, S [38]. The matrix S−1 is the
inverse matrix of the Hadamard S matrix. If f is a feature
vector, we say that S−1f is an S−1 transformation of f .

C. Euclidean Distance in the S−1 Transformation Space

The S−1 matrix is a basic transformation matrix to transform
the data into a new space in the view of linear transformation.
In the new space, the Euclidean distance between two features
in (1) becomes

DS−1

ab =
����S−1�f

�T �
S−1�f

����1/2

=
����fT

�
S−1�T �

S−1��f
���1/2

. (4)

Letting S be a Hadamard S-matrix, S−1 can be written as [38]

S−1 = 2

m + 1

�
2ST − Jm

�
(5)

where Jm is an m × m matrix with all elements being 1.
Substituting (5) into (4), we have [38]

DS−1

ab =
����fT

�
S−1�T �

S−1��f
���1/2

=
�����fT 4

(m + 1)2

�
2ST − Jm

�T �
2ST − Jm

�
�f

����
1/2

=
�����fT 4

(m + 1)2 (2S − Jm)
�
2ST − Jm

�
�f

����
1/2

. (6)

In addition, we have [33]

ST S = SST = 1

4
(m + 1)(I + Jm) (7)

and [33]

SJm = JmS = 1

2
(m + 1)Jm . (8)

With (7) and (8), the distance in the new space can be written
as

DS−1

ab = ���fT [(m + 1)(I + Jm)

−2(m + 1)Jm + mJm]�f
��1/2

= ���fT [(m + 1)I − Jm]�f
��1/2

. (9)

III. PROPOSED DATA DENOISING THEORY

For improving the classification performance, there are two
steps implemented in this article, i.e., rectifying the difference-
distance of samples from negative to positive and maximizing
the SNR. This section describes the proposed data denoising
approach in detail, including the Hadamard S−1 matrix trans-
formation and its benefits and one self-defined matrix A that
can improve the SNR of the target data.

A. Difference-Distance Metric in the S−1

Transformation Space

Specifically, as we mentioned earlier in Section II, if the
difference-distance of a sample in the original space is nega-
tive, i.e., Da−cb < 0, the sample would possibly be misclas-
sified. Inversely, if the difference-distance of the sample in a
new space satisfies DS−1

a−cb > 0, it can be rectified. On the other
hand, in the new space, we maximize the SNR of features to
gain further classification rate improvement.

Theorem 1: Assume that the sample a with feature vector fa

and the sample b with feature vector fb belong to Class 1. The
sample c with feature vector fc belongs to Class 2, as shown
in Fig. 3. Based on the definition of difference-distance in (2),
we have

P(Da−cb > 0) < P
�

DS−1

a−cb > 0
�

(10)

where P(·) denotes the probability.
Proof: According to the definition of difference-distance

in (2), if Da−cb = Dac − Dab ≥ 0, we have (Dac)
2 − (Dab)

2 ≥
0, and Dac + Dab ≥ 0.

By applying the Hadamard matrix S−1 transformation to the
Euclidean distance �fT �f , we have

�
S−1�f

�T �
S−1�f

� = 4�fT �f
(N + 1)

− 4�fT JN�f

(N + 1)2

= 4

(N + 1)2

�
(N + 1)�fT �f
−�fT JN�f

�
(11)

where JN is an N × N matrix with all entries being 1.
The terms �fT �f and �fT JN�f in (11) can be calculated,
respectively, as

�fT �f =
N	

i=1

�
�f2(i)

� = N × E


�f2(i)

�
(12)

and

�fT JN�f = �fT

⎡
⎢⎣

1 · · · 1
... · · · ...
1 · · · 1

⎤
⎥⎦

N×N

�f

=
�

N	
i=1

�f(i)

�2

= N2 × (E[�f])2 (13)

where E[·] is the expectation operator.
Substituting (12) and (13) into (11), we have

�
S−1�f

�T �
S−1�f

� = 4

(N + 1)2

�
(N + 1)�fT �f
−�fT JN�f

�

= 4

(N + 1)2

�
�fT �f + N2 E



(�f)2�

−N2 × (E[�f])2

�

= 4

(N + 1)2

�
�fT �f + N2 × Var(�f)

�
(14)

where Var(�f) = E[�f2] − (E[�f])2 is the variance of �f .
According to (14), the difference-distance in the new space
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Fig. 4. Illustration of difference-distance metric in the S−1 transformation
space. (a) Degradation of SNR caused by the matrix S−1. (b) Comparison of
σ(�nac+�fac) and σ�nab . (c) Intensity of Da−cb . (d) Intensity of DS−1

a−cb .

can be derived to be

DS−1

a−cb = DS−1

ac − DS−1

ab

=
�

DS−1

ac

�2 −
�

DS−1

ab

�2

DS−1

ac + DS−1

ab

=
4

�
(N + 1)Da−cb(Dac + Dab)+
N2

�
σ(�nac+�fac) − σ�nab

� �
�
DS−1

ac + DS−1

ab

�
(N + 1)2

(15)

where σ(�nac+�fac) and σ�nab represent the variance of
(�nac + �fac) and �nab, respectively. �fac = fa − fc, and
�nac means noise associated with �fac. According to (15),
assuming the independence of �fac and �nac, we have
σ(�nac+�fac) = σ(�nac) + σ(�fac). Given that �f and �n are
comparable, the second term in the numerator of (15) can
be considered positive. As a result, DS−1

a−cb is more likely to be
positive compared with Da−cb, which is in the first term of the
numerator of (15). To illustrate the difference-distance metric
in the S−1 transformation space, a simulation is performed
with results shown in Fig. 4. As shown in Fig. 4(b), it is
clear that the term (σ(�nac+�fac) − σ�nab) is positive, and the
intensity of DS−1

a−cb is more likely to be positive compared to
Da−cb. As a result, the classification performance is expected
to improve. Theorem 1, therefore, is proofed.

Notice that the SNR of data may decrease due to the
S−1 transformation, as shown in Fig. 4(a), thus degrading
classification performance. To solve this issue, we introduce
another matrix to improve the SNR by maximizing the
Rayleigh quotient of the interclass distance, as introduced in
Section III-B.

B. SNR Improvement via Rayleigh Quotient Maximization

In order to enhance the SNR of the target data, we transform
(3) into a new space by designing a matrix A so that the SNR

in the new space becomes

SN R� =
���� (A�f)T (A�f)

(A�n)T (A�n)

����
1/2

=
����� �fT

�
AT A

�
�f

�nT
�
AT A

�
�n

�����
1/2

. (16)

The question then becomes how to find the matrix A that
satisfies

SN R� =
����� �fT

�
AT A

�
�f

�nT
�
AT A

�
�n

�����
1/2

≥
���� �fT �f
�nT �n

����
1/2

= SNR. (17)

The concept of the Rayleigh quotient is introduced here
considering that (17) has an analogous form to the Rayleigh
quotient definition [41]

R(M, x) = xT Mx
xT x

(18)

where M is an N × N real and symmetric matrix. Letting x =
�f , we have R(M,�f) = ((�f)T M�f/(�f)T �f). As such,
to find the solution to (17), we consider the maximization of
the Rayleigh quotient, i.e.,

arg max(R(M,�f)). (19)

The Rayleigh quotient has an interesting characteristic that
it is invariable along the scale of �f , i.e.,

R
�
M,�f �� = c�fT Mc�f

c�fT c�f
= �fT M�f

�fT �f
= R(M,�f) (20)

where �f � = c�f with c being a nonzero constant. Therefore,
we can make a fine assumption that �fT �f = 1. Now, (19)
becomes an extremum problem with subsidiary conditions

arg max(R(M,�f)) s.t . �fT �f = 1. (21)

Using the Lagrange multiplier method, we obtain

M�f = λ�f (22)

where λ is a Lagrange multiplier. Therefore, the matrix M that
maximizes the Rayleigh quotient has an eigenvector equal to
�f , with λ being the corresponding eigenvalue. The Rayleigh
quotient has a property that λmin ≤ R(M,�f) ≤ λmax, where
λmin and λmax are the minimum and maximum eigenvalues of
M, respectively.

Thus, if we let AT
maxAmax = Mmax (i.e., AT

maxAmax has
an eigenvalue λmax and the corresponding eigenvector �f),
we have

�fT
�
AT

maxAmax
�
�f

�fT �f
= λmax (23)

�nT
�
AT

maxAmax
�
�n

�nT �n
= η (24)

where λmin ≤ η ≤ λmax. Therefore,

SN R� =
����� �fT

�
AT

maxAmax
�
�f

�nT
�
AT

maxAmax
�
�n

�����
1/2

=
����λmax

η

�fT �f
�nT �n

����
1/2

=
����λmax

η

����
1/2

SNR

≥ SNR (25)

where the equality holds if and only if �f = �n.
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Algorithm 1 Construction of Transformation Matrix A That
Maximizes SN R� in (17)
Input: Training data x with different Classes X1 and X2

Initialization:

• Feature difference �f = 1
n1

�x
x∈X1

− 1
n2

�x
x∈X2

, where
n1 and n2 are sample numbers in Classes X1 and X2,
respectively.

• Two uniformly distributed random N × N matrices B1

and B2

• Matrix � = diag(λN , λN−1, . . . , λ1), 1 ≤ λ1 ≤
λ2 ≤ · · · ≤ λN

Steps:

1: for k = 1, 2, . . . , M where M is the search number
2: Apply QR decomposition to B1 and B2:

B1 = Q1R1, B2 = Q2R2 where Q1 and Q2 are two
orthogonal matrices that have column partitions Q1 =
[q11, q12, . . . , q1N ] and Q2 = [q21, q22, . . . , q2N ],
respectively.R1 and R2 are upper triangular matrices.

3: Let q11 = �f .
4: Apply Schmidt normalization to Q1:

→ β1 = q11,
→ η1 = β1

�β1� = �f
�β1�→ β2 = q12 − �q12, η1�η1

→ η2 = β2
�β2� = q12−�q12,η1�η1

�β2�→ …
→ βN = q1N − �N−1

i=1 �q1N , ηi �ηi

→ ηN = βN
�βN � = q1N −�N−1

i=1 �q1N ,ηi �ηi

�βN �
→ Q1 = [η1, η2, . . . , ηN ]

5: Let A = Q2�QT
1 , and transform x into a new space

by x� = Ax.
6: Do classification on the transformed data x� with 2-fold

using KNN.
7: end for

As of now, we have proven that the SNR of the target data
can be improved with the transformation matrix A, for which
AT A has an eigenvector �f . Considering (22), we construct
the matrix A with one eigenvector being c�f based on the
singular value decomposition (SVD) and QR decomposition
methods. Detailed steps are listed in Algorithm 1.

Suppose there are n samples in the training dataset with
N dimensions. The computational complexity of step 2 is
O(4 × N3). Step 4 is to apply the Schmidt normaliza-
tion to Q1. Its computational complexity is O(2 × N3).
In the last step, the KNN is employed to benchmark
the data denoising, which has a computational complex-
ity of O(1/2 × n × N ). Since the training runs for M
times, the overall computation complexity of Algorithm 1 is
O(M × (6 × N3 + 1/2 × n × N )).

IV. APPLICATION TO GNSS SIGNAL CLASSIFICATION

For urban GNSS positioning, the classification of GNSS
signal types is highly desirable. Unlike features of images,
human faces, and so on, the GNSS signal type features are
independent of each other, causing limited performance using

Fig. 5. Location and equipment for (a) static test (Location A is one of the
several locations in the test) and (b) dynamic test.

common techniques, such as KNN, Gauss process maximum
likelihood, and SVM. This section presents an application
of the proposed data denoising theory to the GNSS signal
classification problem. First, features of the GNSS signal are
introduced, followed by the experimental setup, data collec-
tion, and labeling. Then, we present the classification result
and analysis.

A. Experimental Setup, Data Collection, and Labeling

We conducted both static and dynamic tests. In the static
test, more than 30-min intermediate frequency (IF) data were
collected using the GNSS radio frequency (RF) front end at
several different urban areas in Hong Kong with one example
location shown in Fig. 5(a). The sky mask in the lower
right corner of Fig. 5(a) indicates a very limited sky area in
urban areas. The data collected were postprocessed using an
open-source GPS software receiver [42], which allows extrac-
tions of correlator-level features. Table I lists the parameters of
the experimental configuration. In the vehicular dynamic test,
as shown in Fig. 5(b), a commercial receiver, Ublox M8T with
a patch antenna, was used.

B. Features of GNSS Signal

In general, features for GNSS signal type classification
are extracted from the NMEA or RINEX file that records
measurements, such as pseudorange, Doppler, and the CNR
[12], [14]. With the availability of GNSS raw measurements
in mass-market devices, e.g., tablets and smartphones with
the Android 7 operating system [43], deeper level GNSS
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TABLE I

EXPERIMENTAL CONFIGURATIONS

TABLE II

FEATURES USED FOR GNSS SIGNAL CLASSIFICATION

measurements are accessible, such as navigation message bits
and correlation results of each channel [44]. Our previous
works have explored the performance improvement of GPS
signal classification using these deeper level features over
the RINEX-level classifiers based on a GPS software-defined
receiver (SDR) [7]. Features extracted at different levels are
shown in Table II. Readers can refer to [7] for a detailed
description of these features. In this article, for the static test,
we use a hybrid feature vector consisting of the correlator-level
features in Table II and one RINEX-level feature, i.e., satellite
elevation angle. Since we have no access to the correlators

Fig. 6. Distribution of each signal type.

within a Ublox receiver, we use RINEX-level features in the
dynamic test.

The signal types are labeled using an algorithm called code
pseudorange double difference (DD) proposed in [7]. The code
pseudorange DD observable can be expressed as [7]

DD12
AB = ∇�r12

AB − γ 1
B,MP − γ 1

B,NLOS + ∇�e12
AB (26)

where ∇�r12
AB is the DD between geometric satellite-to-user

range for the reference receiver, A, and rover receiver, B . The
superscripts 1 and 2, respectively, denote the target satellite
to be labeled and the master satellite, which has a high
elevation angle and is assumed to be LOS. γ 1

B,MP and γ 1
B,NLOS

are pseudorange errors caused by MP and NLOS, respectively,
for satellite 1. ∇�e12

AB is the receiver noise-induced pseudor-
ange error. A robust algorithm based on the code pseudorange
DD observable is developed to label signal type in [7]. The
proportion of each signal type is shown in Fig. 6, showing a
relatively even distribution of different signal types. We can
also see that about 70% of the measurements are contaminated
by MP or NLOS receptions, which reflects the importance of
signal type classification for urban positioning applications.

C. Classification Result and Analysis
1) Static Test: In this article, SVM, KNN, and NN are

employed as machine learning tools. Without loss of general-
ity, half of the samples are randomly selected as training data,
and the rest half is for testing. Since the purpose of the pro-
posed denoising algorithm is to rectify misclassified samples,
we choose recall as the performance measure, which measures
a model’s ability to detect positive samples. In addition,
considering the multiclass classification in this application,
i.e., LOS/MP/NLOS classification, the microaveraging recall
is selected to be the performance measure for the overall
effectiveness, which is defined as [45]

Recallμ =
l	

i=1

TPi/

l	
i=1

(TPi + FNi) (27)

where l is the number of classes, TPi denotes the number of
samples that belong to Class ci and are correctly identified, and
FNi is the number of samples that belong to Class ci but are
misclassified to other classes. For the per-class performance,
the recall is used [45]

Recall for class ci = TPi

TPi + FNi
. (28)
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Fig. 7. Overall effectiveness of classification with and without denoising in
the static test.

TABLE III

CONFUSION MATRIX FOR SVM

The computer program is executed ten times. The mean
value of the overall accuracy with uncertainty is shown in
Fig. 7. With data denoising, the overall accuracy for SVM and
KNN is improved by more than 5% and 10%, respectively,
with very small uncertainty. The explanation for the bigger
improvement for KNN than that for SVM is that, on the one
hand, KNN is a type of instance-based learning, and samples
from different classes are more separable in the transformed
domain in this article. On the other hand, the basic idea for an
SVM learning classifier is to find the optimum hyperplane
in the high-dimensional feature space that maximizes the
margin between different classes and minimizes the error. The
result verifies the effectiveness of the proposed data denoising
approach. Compared to SVM, NN has a lower performance
because of the nonlocal- and few-feature issues, as introduced
in Section I. Notice that NN’s performance is also improved
with the proposed data denoising approach, which verifies the
effectiveness of the proposed approach.

Tables III–V show the confusion matrices for SVM, KNN,
and NN, respectively, from one of the ten tests. Fig. 8 is the
per-class classification performance in terms of recall. The
proposed data denoising approach is feasible for all signal
types. A closer look at the result shows that MP has the biggest
improvement over the other two types for SVM and KNN.
The reason is that MP is the combination of both direct and
reflected signals. As a result, the MP signal has a complicated
and time-varying propagation, and its property can be similar
to both LOS and NLOS signals. As can be seen in Fig. 8,

Fig. 8. Per-class classification performance using (a) SVM, (b) KNN,
and (c) NN.

for both SVM and KNN, the MP is the most difficult to
distinguish from the other two types. With data denoising,
those misclassified MP samples are more likely to be rectified.

A deeper analysis is illustrated in Fig. 9, similar to a polar
plot, where samples at the same azimuth are exactly the same
used in different tests. The benefit of presenting classification
results using this plot is twofold, i.e., 1) one can clearly see
the classification result for a single sample in different tests
and 2) one can easily find the distribution of samples that
are rectified with the proposed denoising algorithm. All tests
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TABLE IV

CONFUSION MATRIX FOR KNN

TABLE V

CONFUSION MATRIX FOR NN

Fig. 9. Illustration of samples that are rectified with denoising for an SVM
classifier. Test 1 is not using denoising, while Tests 2–4 are using denoising
with a different matrix A.

in Fig. 9 use the SVM classifier and have the same training
data. Test 1 refers to the classification without denoising, while
Tests 2–4 are with denoising, and they have different values
for matrix A due to different Q1’s used in Algorithm I. Notice
that Fig. 9 excludes the samples that are correctly classified
in all four tests; hence, one can clearly see samples that are
misclassified without denoising and are now rectified with
denoising. As shown in Fig. 9, the microaveraging recall is
improved to about 95% in Tests 2–4 with a different matrix A.
Taking a closer look at the result, as shown in the two
zoomed-in parts in Fig. 9, we have two interesting findings.
On the one hand, samples that are rectified with denoising

Fig. 10. Overall effectiveness of classification with and without denoising
in the dynamic test.

are evenly distributed. On the other hand, for different A’s,
different samples might be rectified. The reason is that, with
different transformations, samples have different distributions
in the new space. These results indicate that the proposed
approach has a good generalization performance.

2) Dynamic Test: Fig. 10 shows the overall accuracy of
classification results with and without denoising results in the
dynamic test. Compared to the static test, the improvement
of overall accuracy with data denoising over that without
denoising is lower, ranging from 1.5% to 3.5%. A potential
reason is that the dynamics make the GNSS measurements
more complicated, which takes on a prominent position over
the noise. Our proposed approach, however, is aimed to deal
with the noise issue. Another reason might be that, according
to the findings in [7], the correlator-level classifier outperforms
the RINEX-level classifier. In the dynamic test, the com-
mercial receiver, Ublox M8T, can only output RINEX-level
measurements, whereas we have access to the correlator-level
measurement in the static test. Notice that both SVM and
KNN outperform NN in this test, which also verifies that the
proposed data denoising is a feasible solution to nonlocal- and
few-feature signal classification problems.

V. CONCLUSION AND FUTURE WORK

In this article, a new data denoising approach has been
proposed by means of a series of matrix transformations. The
core idea behind the proposed approach is to reduce the noise
effect by projecting the target data into a new domain. With
this transformation, samples for which interclass distance is
comparable to noise in the original space can now be correctly
classified. Rayleigh quotient is introduced to compensate for
the SNR decrease due to the domain transformation. This
approach is useful to solve the classification problem, in par-
ticular, for few-feature and nonlocal-feature signals, such as
the GNSS signal. We conducted both static and dynamic
tests using different GNSS receivers and extracted features
at different levels. The results fully verify the effectiveness
of the proposed method. Since our algorithm has general
and simple assumptions making it available for most of the
datasets, lane detection, and face recognition, implementing
our algorithm in more applications would be our another future
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work, not limited to machine learning but also deep learning,
such as CNN.
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